1.
Out of 800 boys in a school, 224 played Cricket, 240 played Hockey and 336 played Basketball. Of the total, 64 played both Basketball and Hockey, 80 played Cricket and Basketball, 40 played Cricket and Hockey; 24 played all the three games. The number of boys who did not play any game is
3.
If n(A) = 10, n(B) = 6, n(C) = 5 for three disjoint sets A, B and C, then n(A∪B∪C)=
4.
If A and B are non-empty sets such that A⊃B, then
7.
If aN={an:n∈N} and bN∩cN=dN, where a, b, c ∈N and b,c are co- prime, then
10.
If n(A) = 4 and n(B) =7, then the minimum and maximum values of n(A∪B) are respectively
11.
If A and B are two sets, then A∪B=A∩B if and only if
14.
For sets A and B, which is false?
17.
The shaded region in the figure represents
19.
If n(A) = 43, n(B) = 51 and n(A∪B)=75, then n((A-B) ∪(B-A))=
20.
Which of the following is true?
22.
A class has 175 students. The following data shows the number of students opting one or more subjects. Maths – 100, Physics – 70, chemistry - 40, maths and physics -30, maths and chemistry – 28 physics and Chemistry -23, Maths, Physics and Chemistry – 18. How many have offered Maths alone?
25.
Let A and B be two non-empty subsets of a set X such that A is not a subset of B, then
26.
From 50 students taking examinations in subjects A, B and C, 37 passed A, 24 passed B and 43 passed C. Atmost 19 passed A and B, atmost 29 passed A and C and atmost 20 passed B and C. The largest possible number that could have passed all the three examinations is
29.
Which of the following is a null set?
30.
Two finite sets have m and n elements. The number of elements in the power set of first set is 48 more than the total number of elements in the power set of the second set. Then the values of m and n respectively are
32.
If the set A contains 5 elements, then the number of elements in the power set P (A) is equal to
35.
The set of intelligent students in a class is
38.
In a certain town 25% families own a cell phone, 15% families own a scooter own scooter and 65% families own neither a cell phone nor a scooter. If 1500 families own both a cell phone and a scooter, then the total number of families in the town is
39.
Let V = {a, e, i, o, u}, V –B = {e, o} and B –V = {k}. Then, the set B is
41.
Let P, Q, R be three sets. Which statement is always true?
42.
If A= {x:x is a multiple of 4}and B={x:x is a multiple of 6},then A∩B consists of all multiples of
45.
If A and B are non-empty sets, then P(A) ∪ P(B) is equal to
47.
A market research group conducted a survey of 1000 consumers and reported that 720 consumers like product A and 450 consumers like the product B, then least number that must have like both products, is
49.
If A={3,{4,5},6}, then find which of the following statements are not true?
50.
Which of the following is a null set?